

# Quick Start Guide Evaluation Kit i.MX 8MQuad EVK CPU Board

## Based on i.MX 8MQuad Application Processor



GET TO KNOW THE EVK BASED ON i.MX 8MQUAD APPLICATION PROCESSOR



Figure 1: Main interfaces of i.MX 8MQ EVK CPU Board

#### www.nxp.com



Figure 2 : Bottom View of i.MX 8MQ EVK CPU Board

#### ABOUT THE EVALUATION KIT BASED ON THE i.MX 8MQUAD

The Evaluation Kit (EVK) based on i.MX 8MQuad introduces developers to the i.MX 8MQuad application processor. To speed up development, hardware design files, tools and board support packages (BSPs) for Linux<sup>®</sup>, FreeRTOS<sup>™</sup> and Android are available for the customers. The i.MX 8MQuad EVK consists of a CPU board and an audio board (ordered separately).

The audio board is used to support extended audio features.

#### **FEATURES**

The following features are available with the EVK CPU board based on the i.MX 8 MQuad applications processor:

- i.MX 8MQuad processor with 5 cores (4×ARM® Cortex®-A53, and 1× Cortex-M4)
- 3GB, 32-bit LPDDR4 with 1.6 GHz clock
- eMMC 5.0, 16GB
- · 32MB Octal SPI NOR flash
- · Micro SD card connector
- USB3.0 Type-C connector with PD support
- USB3.0 Type-A connector
- HDMI2.0a Type-A connector
- 1Gbps Ethernet
- · mini-SAS MIPI-DSI connector
- 2x mini-SAS MIPI-CSI connectors for camera

- USB to serial convertor for debug
- · Infrared receiver
- On-board MIMO 2x2 WiFi and BT4.1
- LEDs for power indication and generalpurpose use
- M.2 connector for WiFi/BT (PCIe, USB, UART, I2C and I2S)
- 3.5mm Audio Jack for amplified speakers
- JTAG 10-Pin connector

## GETTING STARTED

This section describes how to use the EVK and the required accessories to develop applications using the kit.

## 1 Unpacking the Kit

The EVK is shipped with the items listed in Table 1. Ensure the items are available in the i.MX 8MQuad EVK.

| ITEM                 | DESCRIPTION                                                          |  |
|----------------------|----------------------------------------------------------------------|--|
| CPU board            | CPU board with i.MX 8MQuad processor, memory and PMIC                |  |
| Power supply         | Output: DC 12V/5A, Plug: 1.65mm x 5.15mm                             |  |
| USB Type-C<br>Cable  | Cable -Assembly, USB 3.0 Type-A Male, USB micro-B Male, Shielded, 1m |  |
| USB micro-B<br>Cable | Cable -Assembly, USB 2.0 Type-A Male, USB Type-C Male, Shielded, 1m  |  |
| Documentation        | Quick Start Guide                                                    |  |

Table 1: Contents of the i.MX 8MQuad Evaluation Kit

### 2 Prepare Accessories

The following items in Table 2 are required to run the i.MX 8MQuad EVK.

| ITEM                      | DESCRIPTION                                        |
|---------------------------|----------------------------------------------------|
| HDMI display<br>and cable | HDMI display and cable is required to run the HDMI |
| Mouse                     | Mouse with USB interface                           |

Table 2: Necessary Equipment provided by customer

### 3 Download Software and Tools

Download installation software and documentation at www.nxp.com/iMX8MQEVK (address may need to be updated). The following documents are available on the website:

| ITEM          | DESCRIPTION                                                                                         |  |
|---------------|-----------------------------------------------------------------------------------------------------|--|
| Documentation | Schematics, layout and Gerber files                                                                 |  |
|               | Quick Start Guide                                                                                   |  |
| Software      | Linux BSPs, Android BSPs                                                                            |  |
| Development   |                                                                                                     |  |
| Demo Images   | Copy of the latest Linux BSP images and Android images that are available to program on to the eMMC |  |

Table 3: Software and documentation available on NXP website

#### SETTING UP THE SYSTEM

## 1 Connect USB Debug Cable

Connect the micro-B end of a USB cable into debug port J1701. Connect the other end of the cable to a PC acting as a host terminal. 2 UART connections will appear on the PC. The console print will output on "Enhanced COM port", which can be found in "Device Manager" of the PC.

Open the terminal window (i.e., Hyper Terminal or Tera Term), choose the COM port number that corresponds to the "Enhanced COM port" and apply the following configuration.

- Baud rate: 115200
- Data bits: 8
- Stop bit: 1
- · Parity: None
- Flow control: None

# 2 Connect HDMI Display

Connect an HDMI cable to the HDMI connector Jack J1001. Connect the other end of the cable to a HDMI display panel.

# 3 Connect mouse

Connect the mouse to the USB host connector J903.

# Connect Power Supply

Connect the plug of the 12V power supply to the DC power jack J902.

## BOOT PROCESS FOR ANDROID IMAGE

### **Boot Process**

- Switch SW801 to OFF, OFF, ON, OFF (from 1-4 bit) to boot from the eMMC, as shown in Figure 3. After the board images are loaded into the eMMC (The board is shipped with Android image programmed in the eMMC. If you want to use Linux image, see the Download BSP Images section on how to load the image) and the boot switches are correctly configured, the system is ready to run.
- Power on the EVK board by sliding power switch SW701 to ON.
- During the boot process, the Android logo will appear on the HDMI display.
- The Android UI can be seen after the boot process is finished. You can start operating with the mouse.



Figure 3 : BOOT DEVICE switch

#### DIP SWITCH CONFIGURATION

Table 3 shows the switch (SW801) configuration of the boot device for i.MX 8MQuad EVK. MicoSD is chosen as the default.

Table 4 shows the switch (SW802) configuration of the boot mode for i.MX 8MQuad EVK. Internal boot is chosen as the default.

| POS-4 | POS-3 | POS-2 | POS-1 | BOOT DEVICE |
|-------|-------|-------|-------|-------------|
| OFF   | OFF   | ON    | ON    | microSD     |
| OFF   | ON    | OFF   | OFF   | eMMC        |
| OFF   | ON    | ON    | OFF   | NAND        |
| ON    | OFF   | OFF   | OFF   | QSPI        |

Table 4: i.MX 8MQuad EVK CPU boot device switch configuration

| POS-2 | POS-1 | BOOT MODE         |
|-------|-------|-------------------|
| OFF   | OFF   | Boot From Fuses   |
| ON    | OFF   | Serial Downloader |
| OFF   | ON    | Internal Boot     |
| ON    | ON    | Reserved          |

Table 5: i.MX 8MQuad EVK CPU boot mode switch configuration

#### **Button Functions**

Table 5 shows the functions of the push buttons and switches on the board.

| ITEM   | DESCRIPTION                                                                                                                    |  |
|--------|--------------------------------------------------------------------------------------------------------------------------------|--|
| SW701  | Evaluation board power switch<br>• Switching to the ON position connects the 12V power supply to the EVK main<br>power system. |  |
|        | • Switching to the OFF position immediately removes all power from the board.                                                  |  |
|        | EVK ON/OFF button                                                                                                              |  |
| SW1701 | Press and hold for 0.5sec for On, press and hold for 5sec to turn off.                                                         |  |
| SW1702 | EVK RESET button • Pressing of the button will reset the system and begin a boot sequence                                      |  |
|        |                                                                                                                                |  |

Table 6: EVK board button operations

### LED Status

Table 6 shows the status of LEDs on the board

| ITEM         | DESCRIPTION                                          |  |
|--------------|------------------------------------------------------|--|
| D1601/RED    | DCDC_3V3 supply ON                                   |  |
| D1601/GREEN  | General purpose use, controlled by GPIO.             |  |
| D1702/ORANGE | UART2 Data TX(Pulses when Receiving Data via USB)    |  |
| D1702/GREEN  | UART2 Data RX(Pulses when Transmitting Data via USB) |  |
| D1703/ORANGE | UART1 Data TX(Pulses when Receiving Data via USB)    |  |
| D1703/GREEN  | UART1 Data RX(Pulses when Transmitting Data via USB) |  |

Table 7: i.MX 8MQuad EVK CPU - LED Status

## Additional Reference

#### **Download BSP Images**

The board images can be downloaded to the target board by using the manufacturing tool, named MFGTool, which runs on a computer with the Windows® operating system. The MFGTool zip file can be found at www.nxp.com/iMX8MQEVK(address may need to be updated).

Perform the following steps to download the board images:

- 1. Unzip the MFGTool file to a selected location. The directory is named MFGTool-Dir in this example.
- 2. Switch SW802 to OFF, ON (from 1-2 bit) to enter serial download mode as shown in Figure 4.



#### Figure 4 : SW802 setting for Serial Download Mode

3. Connect the Type-C end of a USB cable into the USB Type-C connector J901. Connect the other end of the cable to the PC.

#### www.nxp.com

- Connect the plug of the 12V power supply to the DC power jack J902. Then slide the power switch SW701 to ON. The i.MX 8MQuad will be enumerated as a HID device on PC.
- Double click the file \*.vbs according to the image type and target device as shown:

| Target Device | Image   | VBS file                            |
|---------------|---------|-------------------------------------|
| eMMC          | Linux   | mfgtool2-yocto-mx8-evk-emmc1.vbs    |
| eMMC          | Android | mfgtool2-android-mx8mq-evk-emmc.vbs |
| MicroSD       | Linux   | mfgtool2-yocto-mx8-evk-sd2.vbs      |
| MicroSD       | Android | mfgtool2-android-mx8mq-evk-sd.vbs   |

Table 8: Target Device for downloading the image(content may need to be updated)

 For example, we program Linux image, and choose the eMMC as target device. Double click mfgtool2-yocto-mx8-evk-emmc1.vbs(content may need to be updated), and then click "Start" to start downloading images.

| Status Information<br>Successful Operations: | 0                                                                                   |
|----------------------------------------------|-------------------------------------------------------------------------------------|
| Failed Operations:<br>Failure Rate:          | 0%                                                                                  |
| Start                                        | Exit                                                                                |
|                                              | Status Information<br>Successful Operations:<br>Failed Operations:<br>Failure Rate: |

Figure 5 : Starting Download



The process bar becomes green once the download is complete.





7. Click "Stop", then "Exit".

#### Bootup the board

Before power up, Switch SW802 to ON, OFF (from 1-2 bit) to enter internal boot mode as shown in Figure 4.

The default output device is HDMI, resolution is 3840x2160p60, if user use a different display resolution, then need change the resolution setting in the boot args according to table 7, for example, set 1080p60,

setenv mmcargs 'setenv bootargs console=\${console} root=\${mmcroot} video=HDMI-A-1:1920x1080-32@60'

| Resolution            | Uboot Setting                                                     |  |
|-----------------------|-------------------------------------------------------------------|--|
| HDMI 1.4 3840x2160p60 | default display mode                                              |  |
| HDMI 1.4 3840x2160p30 | support by adding: video=HDMI-A-1:3840x2160-<br>32@30 to bootargs |  |
| HDMI 1.4 1920x1080p60 | support by adding: video=HDMI-A-1:1920x1080-<br>32@60 to bootargs |  |
| HDMI 1.4 1280x720p60  | support by adding: video=HDMI-A-1:1280x720-<br>32@60 to bootargs  |  |
| HDMI 1.4 720x480p60   | support by adding: video=HDMI-A-1:720x480-<br>32@60 to bootargs   |  |

Table 9: Resolution Setting

After power up, the serial port will output message, when the following message output, enter 'root' and return, the system will success bootup.

NXP i.MX Release Distro 4.9.51-mx8-beta imx8mqevk ttymxc0

imx8mqevk login:root

root@imx8mqevk:~#

#### Multimedia

i.MX provides audio optimized software codecs, parsers, hardware acceleration units, and associated plugins. The i.MX provides GStreamer plugins to access the i.MX multimedia libraries and hardware acceleration units.

There are three ways to play video and audio

1. gplay-1.0

gplay-1.0 \$filename --audio-sink='alsasink device="hw:X,0"

The audio default output is audio jack, to route to HDMI need set the HDMI sound card X is the sound card number.

User can use aplay command to list all the sound card in system.

aplay -l

2. playbin

gst-launch-1.0 playbin uri=\$file video-sink=\$video-sink-plugin audio-sink='alsasink device="hw:X,0"

3. full gstreamer pipeline

gst-launch-1.0 filesrc location=\$file ! \$capsfilter ! \$demux ! queue ! \$video\_decoder\_plugin ! \$video\_sink\_plugin ! \$capsfilter ! \$audio\_decoder\_plugin ! \$audiosink

#### **MIPI-DSI**

Except the HDMI, the display can be configured as MIPI-DSI. On EVK board, it uses MINI-SAS interface J1501, connect MIPI-DSI to HDMI cable for display.

The user can use fsl-imx8mq-evk-dual-display.dtb to replace the original dtb file to enable the MIPI-DSI.

#### **MIPI-CSI**

The default DTB will support the MIPI-CSI on J1502. To enable the camera on J1503, there need fsl-imx8mq-evk-mipi-csi2.dtb to replace the original DTB file.

The camera gstreamer commands as following:

```
gst-launch-1.0 v4l2src ! video/x-raw,width=640,height=480 ! kmssink
gst-launch-1.0 v4l2src ! video/x-raw,width=720,height=480 ! kmssink
gst-launch-1.0 v4l2src ! video/x-raw,width=1280,height=720 ! kmssink
gst-launch-1.0 v4l2src ! video/x-raw,width=1920,height=1080 ! kmssink
gst-launch-1.0 v4l2src ! video/x-raw,width=2592,height=1944 !
kmssink
```

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:

(1) This device may not cause harmful interference, and

(2) This device must accept any interference received, including interference that may cause undesired operation.

Attention that changes or modification not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

Note: This product has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This product generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this product does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

-Reorient or relocate the receiving antenna.

Increase the separation between the equipment and receiver.
 Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.

 $-\mbox{Consult}$  the dealer or an experienced radio/TV technician for help.

This equipment should be installed and operated with a minimum distance 20cm between the radiator and your body

#### SUPPORT

Visit the i.MX community at www.imxcommunity.org.

#### WARRANTY

Visit **www.nxp.com/warranty** for complete warranty information.

#### www.nxp.com/iMX8MQEVK

NXP and the NXP logo are trademarks of NXP B.V. All other product or service names are the property of their respective owners. ARM and Cortex are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. © 2012, 2014–2016 NXP B.V.

Doc Number: IMX8MQUADQSG REV 1 Agile Number: 926-29683 REV A